Water Treatment Stats

• Built in 1963, began operation in 1964
• Groundwater system using 7 wells
• Lime Softening Process
 – 1 of 6 lime softening plants in the metro
• Capacity of 14 MGD
• Average day: 2.7 MGD Max day: 5 MGD
• Major upgrades in mid 1990’s and early 2000’s
Water Plant Upgrades

Current Project
• New Slakers
 • Project began Feb, 2018
 • Have been in operation for 3 months

Upcoming Project
• High Service Pump VFDs
 • High energy user
 • Cost savings
Water Distribution Stats

- Constructed in 1960’s
- 120 miles of water main – size range 4-24”
- Cast iron
- 2605 valves
- 1062 hydrants
- 10,839 service connections
 - 75% residential
 - 25% non-residential
Water Use Over Time

Total Pumped per Year

Daily Ave/Max Water Pumped

- Average Day Flow
- Max Day Flow
Water Use Per Capita

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Average Day (AD) Water Pumped (MGD)</th>
<th>Maximum Day (MD) Water Pumped (MGD)</th>
<th>MD:AD Ratio</th>
<th>AD Per Capita Water Use (gpcd)</th>
<th>MD Per Capita Water Use (gpcd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>33,107</td>
<td>3.72</td>
<td>8.49</td>
<td>2.28</td>
<td>112</td>
<td>256</td>
</tr>
<tr>
<td>2008</td>
<td>33,676</td>
<td>3.40</td>
<td>7.41</td>
<td>2.18</td>
<td>101</td>
<td>220</td>
</tr>
<tr>
<td>2009</td>
<td>33,859</td>
<td>3.28</td>
<td>6.75</td>
<td>2.06</td>
<td>97</td>
<td>199</td>
</tr>
<tr>
<td>2010</td>
<td>35,228</td>
<td>3.02</td>
<td>5.63</td>
<td>1.86</td>
<td>86</td>
<td>160</td>
</tr>
<tr>
<td>2011</td>
<td>35,376</td>
<td>3.08</td>
<td>5.90</td>
<td>1.92</td>
<td>87</td>
<td>167</td>
</tr>
<tr>
<td>2012</td>
<td>35,979</td>
<td>3.20</td>
<td>6.81</td>
<td>2.13</td>
<td>89</td>
<td>189</td>
</tr>
<tr>
<td>2013</td>
<td>36,041</td>
<td>3.03</td>
<td>6.25</td>
<td>2.06</td>
<td>84</td>
<td>173</td>
</tr>
<tr>
<td>2014</td>
<td>36,157</td>
<td>2.94</td>
<td>6.01</td>
<td>2.05</td>
<td>81</td>
<td>166</td>
</tr>
<tr>
<td>2015</td>
<td>36,557</td>
<td>2.87</td>
<td>4.97</td>
<td>1.73</td>
<td>78</td>
<td>136</td>
</tr>
<tr>
<td>2016</td>
<td>36,338</td>
<td>2.78</td>
<td>4.80</td>
<td>1.72</td>
<td>77</td>
<td>132</td>
</tr>
</tbody>
</table>
Water Use Related to Weather

Historical Water Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Summer Precipitation (inches)</th>
<th>Average Summer High Temperature (°F)</th>
<th>Average Day (AD) Water Pumped (MGD)</th>
<th>Maximum Day (MD) Water Pumped (MGD)</th>
<th>MD:AD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>18.7</td>
<td>80.2</td>
<td>3.72</td>
<td>8.49</td>
<td>2.28</td>
</tr>
<tr>
<td>2008</td>
<td>7.3</td>
<td>80.4</td>
<td>3.40</td>
<td>7.41</td>
<td>2.18</td>
</tr>
<tr>
<td>2009</td>
<td>9.1</td>
<td>77.8</td>
<td>3.28</td>
<td>6.75</td>
<td>2.06</td>
</tr>
<tr>
<td>2010</td>
<td>13.5</td>
<td>80.3</td>
<td>3.02</td>
<td>5.63</td>
<td>1.86</td>
</tr>
<tr>
<td>2011</td>
<td>8.6</td>
<td>81.0</td>
<td>3.08</td>
<td>5.90</td>
<td>1.92</td>
</tr>
<tr>
<td>2012</td>
<td>6.6</td>
<td>82.8</td>
<td>3.20</td>
<td>6.81</td>
<td>2.13</td>
</tr>
<tr>
<td>2013</td>
<td>6.9</td>
<td>81.8</td>
<td>3.03</td>
<td>6.25</td>
<td>2.06</td>
</tr>
<tr>
<td>2014</td>
<td>6.1</td>
<td>78.3</td>
<td>2.94</td>
<td>6.01</td>
<td>2.05</td>
</tr>
<tr>
<td>2015</td>
<td>15.0</td>
<td>79.4</td>
<td>2.87</td>
<td>4.97</td>
<td>1.73</td>
</tr>
<tr>
<td>2016</td>
<td>18.4</td>
<td>80.0</td>
<td>2.78</td>
<td>4.80</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Wet years: 2007, 2016
Water Comp. Plan Summary

• Purpose:
 – Look at current and future demands
 – Determine future capacity needs
 – Plan for future needs

• How the Plans are used:
 – Guide for redevelopment
 – Land use plays a large role
 – Opportunities for improving system performance
Heat Map of System Pressure
Heat Map of Fire Flow
Water System Condition Assessment

• Desktop analysis
 – Installation date
 – Break history
 – Risk
 – Prioritized list for further inspection

• Condition Assessment
 – Non-destructive techniques

• Replace - Rehabilitation - Leave it alone
Water Main Breaks Over Time
Water Main Breaks by Location
Emergency Water Interconnects

• Connections to our neighbors
• Highly recommended by Minnesota Department of Health
• Richfield currently a stand alone system
• Looking into interconnects with Bloomington and Edina
Emergency Water Interconnect

42 inch Bloomington Water Main

Potential Edina Connection

Logan Water Tower
Sanitary Sewer System Stats

- Constructed in 1950’s
- 100 miles of City main (6” -21”)
- 18 miles of MCES interceptor (21”-48”)
- Vitrified clay pipe (VCP)
- 2340 manholes
- 9 lift stations
Sewer Comp Plan Summary

• Purpose:
 – Look at current and future demands
 – Determine future capacity needs
 – Plan for the future

• How the Plans are used:
 – Guide for redevelopment
 – Land use plays a large role
 – Opportunities to address I&I
Comp Plan Capacity Analysis
Sanitary Sewer Maintenance Practices

• Sewer Cleaning: Jetting
 – Entire system is cleaned each year
 – LMC recommends minimum of every three years

• Sewer Televising
 – TV truck used to inspect trouble spots identified during jetting

• Manhole Rehabilitation
 – In conjunction with the Mill and Overlay

• Lift Station Inspection
 – Checked weekly
Sanitary Sewer Lining

• Began city wide sewer lining project
 – Multi-year initiative
 – Utilizing Cured-In-Place-Pipe (CIPP) process
• Essentially a new pipe within the old pipe
• Reduction in root intrusion
• Reduction in operation and maintenance costs
• Plan is to line all Richfield-owned mains
2018 Sanitary Lining Area

- Open bids August 8th
- Council approval August 21st
- Begin project September
Comp Plan Processes

• Metropolitan Council Review/Approval

• Minnesota Department of Natural Resources Approval for Water Supply Plan

• Approved by City Council with approval of overall Comprehensive Plan
Thank you!

Questions?
• City of Richfield Surface Water Management Plan
• Plan updates required every 10 years
• Watershed Plans -> City SWMP -> City Comp Plan
• Plans layout approach to storm water management within the Watershed/City
• Watershed Approval -> Metropolitan Council
Watersheds Within Richfield
Plan Overview

• **Sets the course** for the City’s management of stormwater and water resources within the City
• **Provides data** and other background information on resources
• **Assesses** city-wide and specific **issues**
• **Sets goals and policies** for the City and its resources
• **Lays out an implementation program** to achieve the City’s goals
• **Guides the SWPPP** (Yearly maintenance plan)
Plan Overview

• Organized into six major sections:
 1. Introduction
 2. Land and Water Resource Inventory
 3. Assessment of Issues and Opportunities
 4. Goals, Strategies, and Policies
 5. Implementation Program
 6. References
Section 3 – Issues and Opportunities

- Water Quality
 - Phosphorus and Chlorides are biggest issue
- Water Quantity and Flood Risk Reduction
- Infrastructure Assessment and Maintenance
- Wetland Management
- Groundwater Management
- Erosion and Sediment Control
Water Quality

- Legion/Taft (MCWD)
 - Infiltration
 - Active Treatment – Flocculation
- Wood Lake and Richfield Lake (RBWMO)
 - Forebay ponds and pre-treatment
Water Quality

• Legion/Taft
• Infiltration
• Active Treatment – Flocculation
• Wood Lake and Richfield Lake
• Forebay ponds and pre-treatment

CITY SWMP
Water Quality

- Legion/Taft
- Infiltration
- Active Treatment – Flocculation
- Wood Lake and Richfield Lake
- Forebay ponds and pre-treatment

CITY SWMP
Water Quality

- Legion/Taft
- Infiltration
- Active Treatment – Flocculation
- Wood Lake and Richfield Lake
- Forebay ponds and pre-treatment
Water Quality
Water Quantity And Flood Risk
Section 4 – Goals, Strategies and Policies

- **Maintain and enhance surface water quality** to meet applicable standards and preserve ecological functions.
- **Minimize the risk of flooding** and associated negative impacts to public health, infrastructure, and the environment.
- **Protect and preserve** the quantity and quality of **groundwater resources**.
- **Minimize erosion of soil** into surface water systems and other negative environmental impacts of stormwater runoff.
- **Protect and preserve fish and wildlife habitat** and shoreland integrity.
- **Protect and preserve** the quantity and quality of **wetlands**.
- **Minimize public expenditures related to surface water management** through effective planning, education, cooperation, and implementation.

CITY SWMP
Section 4 – Goals, Strategies and Policies

• Maintain and enhance surface water quality to meet applicable standards and preserve ecological functions.
• Minimize the risk of flooding and associated negative impacts to public health, infrastructure, and the environment.
• Protect and preserve the quantity and quality of groundwater resources.
• Minimize erosion of soil into surface water systems and other negative environmental impacts of stormwater runoff.
• Protect and preserve fish and wildlife habitat and shoreland integrity.
• Preserve and preserve the quantity and quality of wetlands.
• Minimize public expenditures related to surface water management through effective planning, education, cooperation, and implementation.
Section 4 – Goals, Strategies and Policies

• Target and Coordinate via four main opportunities
 • Operations
 • Regulation and Permitting
 • Education, Training, and Outreach
 • Cooperation with other governmental entities
Section 5 – Implementation Program

- Capital Improvements
- Programs
- Studies
- Top priority will be Infrastructure!
Section 5 – Implementation Program

- Capital Improvements
- Programs
- Studies
- Top priority will be Infrastructure!
Questions?
Jeff Pearson, City Engineer
jpearson@richfieldmn.gov, 612-861-9791